viernes, 11 de noviembre de 2016

Elipse


Forma elíptica trazada en la antigüedad sobre un muro de Tebas (Egipto).
La elipse, como curva geométrica, fue estudiada por Menecmo, investigada por Euclides, y su nombre se atribuye a Apolonio de Pérgamo. El foco y la directriz de la sección cónica de una elipse fueron estudiadas por Pappus. En 1602, Keplercreía que la órbita de Marte era ovalada, aunque más tarde descubrió que se trataba de una elipse con el Sol en un foco. De hecho, Kepler introdujo la palabra «focus» y publicó su descubrimiento en 1609. Halley, en 1705, demostró que el cometa que ahora lleva su nombre trazaba una órbita elíptica alrededor del Sol.

Elementos de una elipse


La elipse y algunas de sus propiedades geométricas.
La elipse es una curva plana y cerrada, simétrica respecto a dos ejes perpendiculares entre sí:
  • El semieje mayor (el segmento C-a de la figura), y
  • El semieje menor (el segmento C-b de la figura).
Miden la mitad del eje mayor y menor respectivamente.

Puntos de una elipse

Los focos de la elipse son dos puntos equidistantes del centro, F1 y F2 en el eje mayor. La suma de las distancias desde cualquier punto P de la elipse a los dos focos es constante, e igual a la longitud del diámetro mayor (d(P,F1)+d(P,F2)=2a).
Por comodidad denotaremos por PQ la distancia entre dos puntos P y Q.
Si F1 y F2 son dos puntos de un plano, y 2a es una constante mayor que la distancia F1F2, un punto P pertenecerá a la elipse si se cumple la relación:
donde  es la medida del semieje mayor de la elipse.

Ejes de una elipse

El eje mayor, 2a, es la mayor distancia entre dos puntos opuestos de la elipse. El resultado de la suma de las distancias de cualquier punto a los focos es constante y equivale al eje mayor. El eje menor 2b, es la menor distancia entre dos puntos opuestos de la elipse. Los ejes de la elipse son perpendiculares entre sí.

Excentricidad de una elipse

La excentricidad ε (épsilon) de una elipse es la razón entre su semidistancia focal (longitud del segmento que parte del centro de la elipse y acaba en uno de sus focos), denominada por la letra c, y su semieje mayor. Su valor se encuentra entre cero y uno.
Elipse1.0.jpg
 , con 
Dado que  , también vale la relación:
o el sistema:
La excentricidad indica la forma de una elipse; una elipse será más redondeada cuanto más se aproxime su excentricidad al valor cero.5 La designación tradicional de la excentricidad es la letra griega ε llamada épsilon.

La Circunferencia


Una circunferencia (C) en negro, diámetro (D) en cyan, radio (R) en rojo, y centro (O) en magenta.
La circunferencia es una curva plana y cerrada donde todos sus puntos están a igual distancia del centro.

Puede ser considerada como una
 elipse de excentricidad nula, o una elipse cuyos semiejes son iguales, o los focos coinciden; o bien fuera una elipse cuyas directrices están en el infinito. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como un polígono regular de infinitos lados, cuya apotema coincide con su radio.Distíngase del círculo, que es el lugar geométrico de los puntos contenidos en el interior de dicha circunferencia, o sea, la circunferencia es el perímetro del círculo. Los puntos de la circunferencia están a una distancia igual al radio del centro del círculo, mientras los demás puntos del círculo están a menor distancia que el radio.
La intersección de un plano con una superficie esférica puede ser: o bien el conjunto vacío (plano exterior); o bien un solo punto (plano tangente); o bien una circunferencia, si el plano secante pasa por el centro, se llama ecuador
La circunferencia de centro en el origen de coordenadas y radio 1 se denomina circunferencia unidad o circunferencia goniométrica

Terminología de la circunferencia


Secantes, cuerdas y tangentes.
Existen varios puntos, rectas y segmentos, singulares en la circunferencia:
  • Centro: Es el punto interior equidistante de todos los puntos de la circunferencia;
  • Radio: Es el segmento que une el centro de la circunferencia con un punto cualquiera de la misma. El radio mide la mitad del diámetro.El radio es igual a la longitud de la circunferencia dividida entre 2π.
  • Diámetro: El diámetro de una circunferencia es el segmento que une dos puntos de la circunferencia y pasa por el centro. El diámetro mide el doble del radio. El diámetro es igual a la longitud de la circunferencia dividida entre π.
  • Cuerda: La cuerda es un segmento que une dos puntos de la circunferencia. El diámetro es la cuerda de longitud máxima.
  • Recta secante: Es la línea que corta a la circunferencia en dos puntos.
  • Recta tangente: Es la línea que toca a la circunferencia en un solo punto.
  • Punto de Tangencia: es el punto de contacto de la recta tangente con la circunferencia.
  • Arco: El arco de la circunferencia es cada una de las partes en que una cuerda divide a la circunferencia. Un arco de circunferencia se denota con el símbolo sobre las letras de los puntos extremos del arco.
  • Semicircunferencia: cada uno de los dos arcos delimitados por los extremos de un diámetro

Parábola 


Secciones cónicas.

La trayectoria de una pelota que rebota es una sucesión de parábolas.
En matemáticas, una parábola (del griego παραβολή) es la sección cónica de excentricidad igual a resultante de cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución del cono sea igual al presentado por su generatriz. El plano resultará por lo tanto paralelo a dicha recta. Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta llamada directriz, y un punto exterior a ella llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.
La parábola aparece en muchas ramas de las ciencias aplicadas debido a que su forma se corresponde con las gráficas de las ecuaciones cuadráticas. Por ejemplo, son parábolas las trayectorias ideales de los cuerpos que se mueven bajo la influencia exclusiva de la gravedad (ver movimiento parabólico y trayectoria balística)

Propiedades 


Diferentes elementos de una parábola.

Diagrama que muestra la propiedad reflexiva, la directriz (verde), y las líneas que unen el foco y la directriz de la parábola (azul)
Aunque la identificación de parábola con la intersección entre un cono recto y un plano que forme un ángulo con el eje de revolución del cono igual al que presenta su generatriz, es exacta, es común definirla también como un lugar geométrico:

De la construcción anterior se puede probar que la parábola es simétrica respecto a la recta perpendicular a la directriz que pasa por el foco. Al punto de intersección de la parábola con tal recta (conocida como eje de la parábola) se le llama vértice de la parábola y es el punto cuya distancia a la directriz es mínima. La distancia entre el vértice y el foco se conoce como
 distancia focal o radio focal.De esta forma, una vez fijados una recta y un punto se puede construir una parábola que los tenga por directriz y foco respectivamente, usando el siguiente procedimiento: Se toma un punto T cualquiera de la recta, se lo une con el foco dado F y a continuación se traza la mediatriz (o perpendicular por el punto medio) del segmento TF. La intersección de la mediatriz con la perpendicular por T a la recta directriz da como resultado un punto P que pertenece a la parábola. Repitiendo el proceso para diferentes puntos T se pueden hallar tantos puntos de la parábola como sea necesario.

Los puntos de la parábola están a la misma distancia del foco F y de la recta directriz.

Construcción de puntos en una parábola.

Lado recto


El lado recto mide 4 veces la distancia focal
Al segmento de recta comprendido por la parábola, que pasa por el foco y es paralelo a la directriz, se le conoce como lado recto.
La longitud del lado recto es siempre 4 veces la distancia focal.
Siendo DE los extremos del lado recto y TU las respectivas proyecciones sobre la directriz, denotando por W la proyección del foco F sobre la directriz, se observa que FEUW y DFWT son cuadrados, y sus lados miden FW=2FV. Por tanto el segmento DE es igual a 4 veces el segmento FV (la distancia focal).
Las tangentes a la parábola que pasan por los extremos del lado recto forman ángulos de 45° con el mismo, consecuencia de que FEUW y DFWT sean cuadrados, junto con la construcción mencionada en la sección anterior. Además, tales tangentes se cortan en la directriz de forma perpendicular, precisamente en el punto de proyección W del foco, propiedades que pueden ser aprovechadas para construir una aproximación geométrica del foco y la directriz cuando éstos son desconocidos.

Semejanza de todas las parábolas


Todas las parábolas son semejantes,es decir, únicamente la escala la que crea la apariencia de que tienen formas diferentes.
Dado que la parábola es una sección cónica, también puede describirse como la única sección cónica que tiene excentricidad . La unicidad se refiere a que todas las parábolas son semejantes, es decir, tienen la misma forma, salvo su escala.
Desafortunadamente, al estudiar analíticamente las parábolas (basándose en ecuaciones), se suele afirmar erróneamente que los parámetros de la ecuación cambian la forma de la parábola, haciéndola más ancha o estrecha. La verdad es que todas las parábolas tienen la misma forma, pero la escala (zoom) crea la ilusión de que hay parábolas de formas diferentes.
Un argumento geométrico informal es que al ser la directriz una recta infinita, al tomar cualquier punto y efectuar la construcción descrita arriba, se obtiene siempre la misma curva, salvo su escala, que depende de la distancia del punto a la directriz.

Tangentes a la parábola



La tangente biseca el ángulo entre el foco, el punto de tangencia y su proyección.
Llamemos F al foco de una parábola, P a un punto cualquiera de la misma y T a la proyección de este sobre la directriz. Sea MP la mediatriz del triángulo FPT, el cual es isósceles por ser iguales las distancias FP y PT, como se ha visto. Luego MPbiseca al ángulo FPT, restando verificar si es tangente a la parábola en el punto P.
Sea Q otro punto de la parábola y sea U su proyección en la directriz. Puesto que FQ=QU y QU<QT, entonces FQ<QT. Dado que esto es cierto para cualquier otro punto de la parábola, se concluye que toda la parábola está de un mismo lado de MP, y como la desigualdad es estricta, no hay otro punto de la parábola que toque a la recta MP, esto quiere decir que MP es la tangente de la parábola en P.

La Hiperbola


Debido a la inclinación del corte, el plano de la hipérbola interseca ambas ramas del cono.
Según la tradición, las secciones cónicas fueron descubiertas por Menecmo, en su estudio del problema de la duplicación del cubo, donde demuestra la existencia de una solución mediante el corte de una parábola con una hipérbola, lo cual es confirmado posteriormente por Proclo y Eratóstenes
Sin embargo, el primero en usar el término hipérbola fue Apolonio de Perge en su tratado Cónicas, considerada obra cumbre sobre el tema de las matemáticas griegas, y donde se desarrolla el estudio de las tangentes a secciones cónicas.

Ecuaciones de la hipérbola

Ecuaciones en coordenadas cartesianas: Ecuación de una hipérbola con centro en el origen de coordenadas  y ecuación de la hipérbola en su forma canónica.
Ecuación de una hipérbola con centro en el punto 
Ejemplos:
a)
b)
Si el eje x es positivo, entonces la hipérbola es horizontal; si es al revés, es vertical. La excentricidad de una hipérbola siempre es mayor que uno.

Ecuación de la hipérbola en su forma compleja
Una hipérbola en el plano complejo es el lugar geométrico formado por un conjunto de puntos , en el plano ; tales que, cualesquiera de ellos satisface la condición geométrica de que el valor absoluto de la diferencia de sus distancias , a dos puntos fijos llamados focos y , es una constante positiva igual al doble de la distancia (o sea  ) que existe entre su centro y cualesquiera de sus vértices del eje focal.
La ecuación queda: 
Evidentemente esta operación se lleva a cabo en el conjunto de los números complejos.

Ecuaciones en coordenadas polares


Dos hipérbolas y sus asíntotas en coordenadas cartesianas.
Hipérbola abierta de derecha a izquierda: Hyperbola2.png

Hipérbola abierta de arriba a abajo:
Hipérbola abierta de noreste a suroeste: Giperbola-ravnoboch.png
Hipérbola abierta de noroeste a sureste:
Hipérbola con origen en el foco derecho:
Hipérbola con origen en el foco izquierdo:

Ecuaciones paramétricas


Imagen de sección cónica.
Hipérbola abierta de derecha a izquierda:
Hipérbola abierta de arriba a abajo:
En todas las fórmulas (h,k) son las coordenadas del centro de la hipérbola, a es la longitud del semieje mayor, b es la longitud del semieje menor.

Elementos de la hipérbola

Eje mayor o real

El eje mayor es la recta de la hipérbola donde pertenecen los focos y los vértices de la misma. Su valor es 2a y es perpendicular al eje imaginario

Eje menor o imaginario.

El eje menor o imaginario no tiene puntos en común con la hipérbola. Sin embargo, siempre se cumple que las perpendiculares lanzadas por sus extremos cortan con las perpendiculares lanzadas por los extremos del eje mayor en 4 puntos que pueden servir para trazar las asíntotas.

Asíntotas

Son las rectas r y r' que pasan por el centro de la hipérbola y verifican que se acercan ramas de la misma tanto más cuanto más nos alejamos del centro de la hipérbola.
Las ecuaciones de las asíntotas son: r: y= b/a x r': y = -b/a r

Vértices

Los vértices de una hipérbola son los puntos donde ésta corta a sus ejes.

Focos

Son dos puntos, , respecto de los cuales permanece constante la diferencia de distancias (en valor absoluto) a cualquier punto, , de dicha hipérbola.

Centro

Punto medio de los vértices y de los focos de la hipérbola.

Tangentes

La tangente a una hipérbola en cualquier punto de la curva es bisectriz del ángulo formado por los radios vectores de ese punto.